Newer
Older
![Kubernetes Logo](https://raw.githubusercontent.com/kubernetes-sigs/kubespray/master/docs/img/kubernetes-logo.png)
If you have questions, check the documentation at [kubespray.io](https://kubespray.io) and join us on the [kubernetes slack](https://kubernetes.slack.com), channel **\#kubespray**.
- Can be deployed on **[AWS](docs/aws.md), GCE, [Azure](docs/azure.md), [OpenStack](docs/openstack.md), [vSphere](docs/vsphere.md), [Equinix Metal](docs/equinix-metal.md) (bare metal), Oracle Cloud Infrastructure (Experimental), or Baremetal**
- **Highly available** cluster
- **Composable** (Choice of the network plugin for instance)
- Supports most popular **Linux distributions**
- **Continuous integration tests**
Below are several ways to use Kubespray to deploy a Kubernetes cluster.
Wong Hoi Sing Edison
committed
### Ansible
Install Ansible according to [Ansible installation guide](/docs/ansible.md#installing-ansible)
then run the following steps:
Wong Hoi Sing Edison
committed
# Copy ``inventory/sample`` as ``inventory/mycluster``
cp -rfp inventory/sample inventory/mycluster
Wong Hoi Sing Edison
committed
# Update Ansible inventory file with inventory builder
declare -a IPS=(10.10.1.3 10.10.1.4 10.10.1.5)
CONFIG_FILE=inventory/mycluster/hosts.yaml python3 contrib/inventory_builder/inventory.py ${IPS[@]}
Wong Hoi Sing Edison
committed
# Review and change parameters under ``inventory/mycluster/group_vars``
cat inventory/mycluster/group_vars/all/all.yml
cat inventory/mycluster/group_vars/k8s_cluster/k8s-cluster.yml
Wong Hoi Sing Edison
committed
# Deploy Kubespray with Ansible Playbook - run the playbook as root
# The option `--become` is required, as for example writing SSL keys in /etc/,
# installing packages and interacting with various systemd daemons.
# Without --become the playbook will fail to run!
ansible-playbook -i inventory/mycluster/hosts.yaml --become --become-user=root cluster.yml
Wong Hoi Sing Edison
committed
Note: When Ansible is already installed via system packages on the control node,
Python packages installed via `sudo pip install -r requirements.txt` will go to
a different directory tree (e.g. `/usr/local/lib/python2.7/dist-packages` on
Ubuntu) from Ansible's (e.g. `/usr/lib/python2.7/dist-packages/ansible` still on
Ubuntu). As a consequence, the `ansible-playbook` command will fail with:
ERROR! no action detected in task. This often indicates a misspelled module name, or incorrect module path.
```
This likely indicates that a task depends on a module present in ``requirements.txt``.
One way of addressing this is to uninstall the system Ansible package then
reinstall Ansible via ``pip``, but this not always possible and one must
take care regarding package versions.
A workaround consists of setting the `ANSIBLE_LIBRARY`
and `ANSIBLE_MODULE_UTILS` environment variables respectively to
the `ansible/modules` and `ansible/module_utils` subdirectories of the ``pip``
installation location, which is the ``Location`` shown by running
`pip show [package]` before executing `ansible-playbook`.
A simple way to ensure you get all the correct version of Ansible is to use
the [pre-built docker image from Quay](https://quay.io/repository/kubespray/kubespray?tab=tags).
You will then need to use [bind mounts](https://docs.docker.com/storage/bind-mounts/)
to access the inventory and SSH key in the container, like this:
git checkout v2.21.0
docker pull quay.io/kubespray/kubespray:v2.21.0
docker run --rm -it --mount type=bind,source="$(pwd)"/inventory/sample,dst=/inventory \
--mount type=bind,source="${HOME}"/.ssh/id_rsa,dst=/root/.ssh/id_rsa \
quay.io/kubespray/kubespray:v2.21.0 bash
# Inside the container you may now run the kubespray playbooks:
ansible-playbook -i /inventory/inventory.ini --private-key /root/.ssh/id_rsa cluster.yml
```
Wong Hoi Sing Edison
committed
### Vagrant
For Vagrant we need to install Python dependencies for provisioning tasks.
Check that ``Python`` and ``pip`` are installed:
If this returns the version of the software, you're good to go. If not, download and install Python from here <https://www.python.org/downloads/source/>
Install Ansible according to [Ansible installation guide](/docs/ansible.md#installing-ansible)
then run the following step:
```ShellSession
vagrant up
```
## Documents
- [Requirements](#requirements)
- [Kubespray vs ...](docs/comparisons.md)
- [Getting started](docs/getting-started.md)
- [Setting up your first cluster](docs/setting-up-your-first-cluster.md)
- [Ansible inventory and tags](docs/ansible.md)
- [Integration with existing ansible repo](docs/integration.md)
- [Deployment data variables](docs/vars.md)
- [DNS stack](docs/dns-stack.md)
- [HA mode](docs/ha-mode.md)
- [Network plugins](#network-plugins)
- [Vagrant install](docs/vagrant.md)
- [Flatcar Container Linux bootstrap](docs/flatcar.md)
- [Debian Jessie setup](docs/debian.md)
- [openSUSE setup](docs/opensuse.md)
- [Downloaded artifacts](docs/downloads.md)
- [Cloud providers](docs/cloud.md)
- [OpenStack](docs/openstack.md)
- [AWS](docs/aws.md)
- [Azure](docs/azure.md)
- [vSphere](docs/vsphere.md)
- [Adding/replacing a node](docs/nodes.md)
- [Air-Gap installation](docs/offline-environment.md)
- [Roadmap](docs/roadmap.md)
## Supported Linux Distributions
- **Flatcar Container Linux by Kinvolk**
- **Debian** Bullseye, Buster, Jessie, Stretch
- **CentOS/RHEL** 7, [8, 9](docs/centos.md#centos-8)
- **Fedora** 35, 36
- **Fedora CoreOS** (see [fcos Note](docs/fcos.md))
- **openSUSE** Leap 15.x/Tumbleweed
- **Oracle Linux** 7, [8, 9](docs/centos.md#centos-8)
- **Alma Linux** [8, 9](docs/centos.md#centos-8)
- **Rocky Linux** [8, 9](docs/centos.md#centos-8)
- **Kylin Linux Advanced Server V10** (experimental: see [kylin linux notes](docs/kylinlinux.md))
- **Amazon Linux 2** (experimental: see [amazon linux notes](docs/amazonlinux.md))
- **UOS Linux** (experimental: see [uos linux notes](docs/uoslinux.md))
- **openEuler** (experimental: see [openEuler notes](docs/openeuler.md))
Note: Upstart/SysV init based OS types are not supported.
- [kubernetes](https://github.com/kubernetes/kubernetes) v1.26.2
- [etcd](https://github.com/etcd-io/etcd) v3.5.6
- [docker](https://www.docker.com/) v20.10 (see note)
- [containerd](https://containerd.io/) v1.6.19
- [cri-o](http://cri-o.io/) v1.24 (experimental: see [CRI-O Note](docs/cri-o.md). Only on fedora, ubuntu and centos based OS)
- [cni-plugins](https://github.com/containernetworking/plugins) v1.2.0
- [calico](https://github.com/projectcalico/calico) v3.24.5
- [canal](https://github.com/projectcalico/canal) (given calico/flannel versions)
- [cilium](https://github.com/cilium/cilium) v1.12.1
- [flannel](https://github.com/flannel-io/flannel) v0.20.2
- [kube-ovn](https://github.com/alauda/kube-ovn) v1.10.7
- [kube-router](https://github.com/cloudnativelabs/kube-router) v1.5.1
- [multus](https://github.com/k8snetworkplumbingwg/multus-cni) v3.8
- [weave](https://github.com/weaveworks/weave) v2.8.1
- [kube-vip](https://github.com/kube-vip/kube-vip) v0.5.11
- [cert-manager](https://github.com/jetstack/cert-manager) v1.11.0
- [coredns](https://github.com/coredns/coredns) v1.9.3
- [ingress-nginx](https://github.com/kubernetes/ingress-nginx) v1.6.4
- [krew](https://github.com/kubernetes-sigs/krew) v0.4.3
- [argocd](https://argoproj.github.io/) v2.6.3
- [metallb](https://metallb.universe.tf/) v0.12.1
- [registry](https://github.com/distribution/distribution) v2.8.1
- Storage Plugin
- [cephfs-provisioner](https://github.com/kubernetes-incubator/external-storage) v2.1.0-k8s1.11
- [rbd-provisioner](https://github.com/kubernetes-incubator/external-storage) v2.1.1-k8s1.11
- [aws-ebs-csi-plugin](https://github.com/kubernetes-sigs/aws-ebs-csi-driver) v0.5.0
- [azure-csi-plugin](https://github.com/kubernetes-sigs/azuredisk-csi-driver) v1.10.0
- [cinder-csi-plugin](https://github.com/kubernetes/cloud-provider-openstack/blob/master/docs/cinder-csi-plugin/using-cinder-csi-plugin.md) v1.22.0
- [gcp-pd-csi-plugin](https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driver) v1.4.0
- [local-path-provisioner](https://github.com/rancher/local-path-provisioner) v0.0.23
- [local-volume-provisioner](https://github.com/kubernetes-sigs/sig-storage-local-static-provisioner) v2.5.0
Cristian Calin
committed
## Container Runtime Notes
- Supported Docker versions are 18.09, 19.03 and 20.10. The *recommended* Docker version is 20.10. `Kubelet` might break on docker's non-standard version numbering (it no longer uses semantic versioning). To ensure auto-updates don't break your cluster look into e.g. the YUM ``versionlock`` plugin or ``apt pin``).
Cristian Calin
committed
- The cri-o version should be aligned with the respective kubernetes version (i.e. kube_version=1.20.x, crio_version=1.20)
- **Minimum required version of Kubernetes is v1.24**
- **Ansible v2.11+, Jinja 2.11+ and python-netaddr is installed on the machine that will run Ansible commands**
- The target servers must have **access to the Internet** in order to pull docker images. Otherwise, additional configuration is required (See [Offline Environment](docs/offline-environment.md))
- The target servers are configured to allow **IPv4 forwarding**.
- If using IPv6 for pods and services, the target servers are configured to allow **IPv6 forwarding**.
- The **firewalls are not managed**, you'll need to implement your own rules the way you used to.
Wong Hoi Sing Edison
committed
in order to avoid any issue during deployment you should disable your firewall.
- If kubespray is run from non-root user account, correct privilege escalation method
should be configured in the target servers. Then the `ansible_become` flag
or command parameters `--become or -b` should be specified.
These limits are safeguarded by Kubespray. Actual requirements for your workload can differ. For a sizing guide go to the [Building Large Clusters](https://kubernetes.io/docs/setup/cluster-large/#size-of-master-and-master-components) guide.
- Master
- Memory: 1500 MB
- Node
- Memory: 1024 MB
You can choose among ten network plugins. (default: `calico`, except Vagrant uses `flannel`)
- [flannel](docs/flannel.md): gre/vxlan (layer 2) networking.
- [Calico](https://docs.projectcalico.org/latest/introduction/) is a networking and network policy provider. Calico supports a flexible set of networking options
designed to give you the most efficient networking across a range of situations, including non-overlay
and overlay networks, with or without BGP. Calico uses the same engine to enforce network policy for hosts,
pods, and (if using Istio and Envoy) applications at the service mesh layer.
- [canal](https://github.com/projectcalico/canal): a composition of calico and flannel plugins.
- [cilium](http://docs.cilium.io/en/latest/): layer 3/4 networking (as well as layer 7 to protect and secure application protocols), supports dynamic insertion of BPF bytecode into the Linux kernel to implement security services, networking and visibility logic.
- [weave](docs/weave.md): Weave is a lightweight container overlay network that doesn't require an external K/V database cluster.
(Please refer to `weave` [troubleshooting documentation](https://www.weave.works/docs/net/latest/troubleshooting/)).
- [kube-ovn](docs/kube-ovn.md): Kube-OVN integrates the OVN-based Network Virtualization with Kubernetes. It offers an advanced Container Network Fabric for Enterprises.
- [kube-router](docs/kube-router.md): Kube-router is a L3 CNI for Kubernetes networking aiming to provide operational
simplicity and high performance: it uses IPVS to provide Kube Services Proxy (if setup to replace kube-proxy),
iptables for network policies, and BGP for ods L3 networking (with optionally BGP peering with out-of-cluster BGP peers).
It can also optionally advertise routes to Kubernetes cluster Pods CIDRs, ClusterIPs, ExternalIPs and LoadBalancerIPs.
- [macvlan](docs/macvlan.md): Macvlan is a Linux network driver. Pods have their own unique Mac and Ip address, connected directly the physical (layer 2) network.
- [multus](docs/multus.md): Multus is a meta CNI plugin that provides multiple network interface support to pods. For each interface Multus delegates CNI calls to secondary CNI plugins such as Calico, macvlan, etc.
The network plugin to use is defined by the variable `kube_network_plugin`. There is also an
option to leverage built-in cloud provider networking instead.
See also [Network checker](docs/netcheck.md).
## Ingress Plugins
- [nginx](https://kubernetes.github.io/ingress-nginx): the NGINX Ingress Controller.
- [metallb](docs/metallb.md): the MetalLB bare-metal service LoadBalancer provider.
Wong Hoi Sing Edison
committed
- [kubernetes.io/docs/setup/production-environment/tools/kubespray/](https://kubernetes.io/docs/setup/production-environment/tools/kubespray/)
- [kubespray, monitoring and logging](https://github.com/gregbkr/kubernetes-kargo-logging-monitoring) by @gregbkr
- [Deploy Kubernetes w/ Ansible & Terraform](https://rsmitty.github.io/Terraform-Ansible-Kubernetes/) by @rsmitty
- [Deploy a Kubernetes Cluster with Kubespray (video)](https://www.youtube.com/watch?v=CJ5G4GpqDy0)
Wong Hoi Sing Edison
committed
- [Digital Rebar Provision](https://github.com/digitalrebar/provision/blob/v4/doc/integrations/ansible.rst)
- [Terraform Contrib](https://github.com/kubernetes-sigs/kubespray/tree/master/contrib/terraform)
[![Build graphs](https://gitlab.com/kargo-ci/kubernetes-sigs-kubespray/badges/master/pipeline.svg)](https://gitlab.com/kargo-ci/kubernetes-sigs-kubespray/pipelines)
CI/end-to-end tests sponsored by: [CNCF](https://cncf.io), [Equinix Metal](https://metal.equinix.com/), [OVHcloud](https://www.ovhcloud.com/), [ELASTX](https://elastx.se/).